Allosteric Modulation of AMPA Receptors
The ionotropic glutamate receptors that mediate fast excitatory synaptic transmission are critical for the normal development and function of the nervous system and for the processes underlying learning and memory. These receptors have also been implicated in the etiology of neurological disorders, including Alzheimer’s, Huntington’s and Parkinson’s diseases, ALS, epilepsy, and brain damage following stroke. Effective new therapies for treatment of the disorders may result from development of drugs that bind to allosteric sites on the AMPA subtype of glutamate receptor.

Sponsor: Intramural
PI/PD: Doris K. Patneau

AMPA Receptor Expression and Selective Neuronal Death
This project examines why certain types of neurons, including motor neurons and cerebellar Purkinje cells, are particularly vulnerable to excitotoxicity mediated by AMPA receptors. Experiments will determine whether these cells possess AMPA receptors with unique functional properties and/or molecular compositions that make them selectively vulnerable.

Sponsor: National Institutes of Health
PI/PDs: Doris K. Patneau and James Brorson, University of Chicago

Effects of Stargazin on AMPA Receptor Channel Function
Stargazin is a transmembrane protein that is known to act as a molecular chaperone in trafficking of the AMPA subtype of glutamate receptor to the cell surface. We recently discovered that stargazin and other members of this class of proteins, known as TARPs, also affect AMPA receptor channel function and is as an auxiliary subunit of the receptor. Studies focus on identification of the specific effects of TARPs on gating and desensitization of the AMPA channel, regions of interaction between stargazin and the AMPA receptor, and the underlying mechanism for TARP modulation.

Sponsor: National Institutes of Health
PI/PD: Doris K. Patneau
Co-investigator: Dorothy Turetsky
Alterations in Glutamate Metabolism in Sensory Neurons During Chronic Inflammation
In chronic inflammation, elevated release of glutamate from sensory nerves augments pain signals sent to the brain. This is due to an increase in glutaminase, the enzyme for glutamate synthesis in sensory neurons. Two mechanisms are being explored for increased production of glutaminase: nerve growth factor from the inflamed field, and stabilization of glutaminase mRNA.

Sponsor: National Institutes of Health
PI/PD: Kenneth E. Miller

Analgesia Research Laboratory (ARL)
The overall mission of the ARL is to understand the detailed molecular mechanism that leads from the administration of an opioid analgesic like morphine to the end result of analgesia. Currently, studies are centered on the cloning of opioid receptors from different vertebrate species in order to investigate the molecular evolution of opioid receptor proteins. Using comparative bioinformatics, opioid receptor datasets are being investigated with respect to particular receptor domains that confer opioid-type selectivity. The overall goal is to better understand how opioid analgesics produce their pain-killing actions with the hope of designing better and safer opioid drugs.

Sponsor: NIH-NIDA
PI/PD: Craig W. Stevens

Developing Diagnostic Assays to Baboon Cytomegalovirus
Baboons represent an invaluable source of xenogeneic organ donors for human patients and are needed to relieve the great lack of human donor organs. However, the risk of transmitting or allowing the establishment of a zoonotic virus in humans is a real and frightening consideration. This proposed study will focus on cytomegalovirus (CMV), since this is the most commonly transmitted virus in human transplantation procedures and is a major cause of many problems in immunosuppressed transplant recipients. This project will identify the indigenous CMV of baboons (BaCMV) and develop sensitive diagnostic assays. These tests will be capable of detecting BaCMV-infected potential organ donors and will be useful in screening baboons for the establishment of specific pathogen free (SPF) breeding colonies.

Sponsor: Intramural Funding
PI/PD: Earl L. Blewett

Sex Differences and the Kidney
It is well established that premenopausal women are protected from renal disease compared to age-matched men whereas postmenopausal women lose this renoprotection. Understanding sex differences related to the pathophysiology of the kidney lies in the molecular mechanisms related to estrogen- and androgen-mediated signaling. Studies are underway to examine transcriptome profiling via serial analysis of gene expression in kidneys from males and females under various physiological and pathological conditions. Identifying these sex differences will lead to newer, more effective therapies for kidney disease.

Sponsor: Intramural Funding
PI/PDs: Dr. Alexander J. Rouch and Dr. Alain Doucet, University of Paris

Dietary Protein and the Kidney
Consuming high or low protein diets greatly affects the physiology of the kidney. High protein consumption enlarges the kidney and increases the renal workload. Physicians prescribe low
protein diets for patients with renal disease because this tends to slow down the progression of the disease. We study the physiological and molecular mechanisms responsible for the many effects of high and low protein diets on the kidney. Results allow us to inform the public of consequences related to dietary protein.

Sponsor: Intramural Funding
PI/PD: Dr. Alexander J. Rouch

Attenuation of astroglial chemokine expression by β-funaltrexamine: implications for neuroAIDS therapy

Increasing evidence suggests that neuronal damage associated with neuroAIDS results in part from inflammation. Astrocyte-derived chemokines, including CCL2 and CXCL10, have been implicated as inflammatory molecules involved in neuroAIDS. We recently characterized β-funaltrexamine (β-FNA) inhibition of astroglial chemokine expression. The long-term goal is to identify the molecular mechanism responsible for the anti-inflammatory actions of β-FNA.

Sponsor: National Institutes of Health
PI/PD: Randall L. Davis

Characterization of an in vitro model of Parkinson’s disease-associated neuroinflammation

Parkinson’s disease (PD) is a neurological disorder characterized by the progressive loss of dopaminergic neurons. Loss of dopaminergic neurons in PD is associated with activation of neighboring astroglia (i.e., induction of chemokine and iNOS production), which may contribute to neuropathology. While there are numerous in vitro models of neuroinflammation, few are specifically designed to assess PD-associated neuroinflammation. Therefore, we are interested in developing an in vitro model of neuroinflammation that more closely mimics the PD condition. This model can then be utilized to identify and characterize potential, therapeutic anti-inflammatory agents.

Sponsor: Intramural Funding
PI/PD: Randall L. Davis

Characterization of the anti-inflammatory actions of cannabinoid agents

Numerous CNS pathologies are associated with neuroinflammation. Emerging evidence suggests that cannabinoids may attenuate neuroinflammation. Therefore, we are interested in characterizing the anti-inflammatory actions of cannabinoids on inflammatory signaling in human microglial and astroglial cells.

Sponsor: Intramural Funding
PI/PD: Randall L. Davis

Ethanol Effects on Human Astroglial Chemokine Expression

Chronic abusive alcohol consumption causes brain pathologies and may compromise immune responsiveness in the brain. Chemokines released by astroglial cells in the brain are necessary for normal brain function and are involved in the response to injury and infection. We hypothesize that alcohol inhibits chemokine expression in human astroglia, thereby, contributing to alcohol-induced brain pathologies. Information gained in this project will lend significant insight into the effects of alcohol on astroglial chemokine expression and function.

Sponsor: Intramural Funding
PI/PD: Randall L. Davis
HIV/Cocaine Neurotoxicity in Females
This program examines the interaction between gp120/Tat (HIV proteins associated with neurotoxicity), estrogen, and cocaine in female rats. Ultimately, the goal of this research is to provide insight into gender-related differences in AIDS-related central nervous system disorders leading to potential gender-specific treatment strategies for HIV and cocaine addiction.

Sponsor: National Institutes of Health-NIDA
PI/PD: David R. Wallace

Effects of Trace Heavy Metal Exposure on CNS Activity
These studies examine the effects of low-level manganese and mercury exposure on the dopaminergic function in cell culture and whole animal. Low-level exposure to heavy metals may not cause overt CNS effects until much later. These studies have implications in forensic analysis and determining the potential cause of CNS damage.

Sponsor: Intramural Funding
PI/PD: David R. Wallace

Isolation and Characterization of Novel CNS-Acting Compounds from Natural Sources
This program investigates the use of naturally occurring compounds as centrally acting agents. One series of studies has been examining the effects of Native American plants indigenous to Oklahoma and their potential analgesic effects. A second series is investigating the estrogenic effects of flavonoids found in soy and flaxseed.

Sponsor: Intramural Funding
PI/PD: David R. Wallace

Development of a New Animal Model to Study Autism Spectrum Disorder: Role of the Dopaminergic System.
These studies utilize the prairie vole as a novel animal model for investigating the underlying causes of ASD. By modifying the social activity/interaction of the vole one may postulate that these changes resemble the societal dysfunction normally observed in patients suffering from ASD. Current work is also focusing on alterations in dopaminergic function following exposure to environmental toxins, such as heavy metals. We have observed significant social dysfunction in male voles following exposure to mercury. Neurochemical studies in rats have demonstrated that the striatum is a dopamine-rich brain region which is robustly affected following exposure to mercury. Additional work is being performed to correlate the outcomes observed in rat and vole studies and to further examine the neurochemical alterations following mercury exposure.

Sponsor: Intramural Funding
PI/PDs: Tom Curtis and David R. Wallace

Hormonal Linked Etiology of E.coli Urinary Tract Infections (UTI)
Estrogen alters the susceptibility to infections at various stages of the menstrual cycle. Hypoestrogenemia may predispose post-menopausal women to urinary tract infections. *Escherichia coli* is the leading cause of urinary tract infections. Invasive *E. coli* with dry adhesions have the capacity to invade epithelial cells and cause chronic UTI in humans. Recent data from our laboratory directly indicates a protective role of estrogen involving estrogen receptors during *E.coli* bacterial invasion on hepatoma cells and also in our *in vivo* UTI model. Studies are on the way to study hormonal linkage to UTI pathogenesis and design novel therapies.

Sponsor: Intramural Funding
PI/PD: Rashmi Kaul
Hormonal Modulation of Hepatitis C Related Carcinogenesis

The hepatitis C virus (HCV) infects more than 100 million people and causes acute and chronic hepatitis and hepatocellular carcinoma (HCC). HCC is the third most common cause of cancer death associated with chronic liver disease and cirrhosis. There is no vaccine available for HCV and 40%-50% of patients are unresponsive to standard treatment. Predominance of HCC in males highlights the significance of estrogens in HCC development. We are studying the interactive role of estrogen and HCV proteins on HCV-related HCC using *in vivo* and *in vitro* models. Studies on estrogen involvement in HCC pathogenesis may open new avenues to therapeutic modalities against HCC.

Sponsor: Intramural Funding

PI/PD: Rashmi Kaul

Human Identity Laboratory

Project #1- New method for assessing DNA quantity/quality prior to DNA profiling.

Standards under which forensic DNA typing laboratories operate mandate that the amount of human DNA recovered from forensic samples be determined. Current methods used for quantification of human DNA in extracts often utilize real-time PCR which, although sensitive, is an expensive technology to implement and support (~$5.00/sample). We recently devised a simpler technology that will not only quantitate the amount of human DNA in a sample, but will also determine the sex of the donor, whether there is a mixture of DNA from a male and female donor (important in sexual assault evidence), whether the sample may also contain inhibitory compounds that may block PCR amplification used in producing the DNA profile of the donor(s), and finally whether or not the DNA in the extract is degraded. These data can be very important in guiding a forensic analyst in choosing among the various DNA typing methodologies available to ensure the greatest chance for obtaining a complete DNA profile of the perpetrator of a crime. Current research is attempting to add additional DNA targets present on the human mitochondrial genome to the existing targets on human genomic DNA so that the assay will also produce a quantitation estimate of mitochondrial DNA present in the sample for those labs that perform mtDNA testing in addition to the more typical DNA typing.

PI/PD: Robert W. Allen

Human Identity Laboratory

Project #2- Development of a DNA typing methodology suitable for attributing the source of pathogens targeting agriculturally important plants.

One of the newest acknowledged threats to the U.S. is the threat to our agricultural productivity. The threat of agroterrorism is real and the federal government is taking steps to develop a response capability to the release of plant pathogens that could threaten crops. Research underway in the Human Identity Laboratory has as its goal the development of a generic DNA typing method that will be able to trace the source of a wide range of bacterial pathogens that target crops. For the method to be useful in microbial forensics it must be reliable, robust, and discriminatory and the information produced by the method must be portable so results produced in different laboratories can be shared. The method currently under investigation has been used to create genetic fingerprints of several bacterial pathogens including *Serratia marcescens* (infects cucurbit crops), *Pseudomonas syringae* (infects tomatoes and is also an opportunistic pathogen of humans), and *Staphylococcus aureus* (an opportunistic pathogen of humans). Thus far, we have found the method to be highly discriminatory both for distinguishing members of different bacterial species and even distinguishing among different strains of the same bacterial species.
Immune Modulation
Our knowledge of the complexity of endogenous and exogenous control agents and mechanisms that influence the immune system continues to grow. This laboratory develops new methodologies and applies them to study the action of agents on the immune system, applications of immune modulation, and immunopathology
Sponsor: Intramural Funding
PI/PD: Joseph A. Price

Intermediate Filaments in Mitosis
The role of intermediate filaments in mitosis is currently being investigated. Immunoelectron-microscopy, immunohistochemistry, immunofluorescence, mammalian cell culture, and high voltage electron microscopy are used to study cells as they progress through mitosis. The interaction of the intermediate filament system with other cytoskeletal components (microtubules and microfilaments) is also being explored. The status of the cytoskeleton in transformed or cancerous cells is a topic of interest with emphasis on the transfer of information between the cell membrane and the nuclear membrane. The function of cyclic AMP in this mechanism is being studied.
Sponsor: Intramural Funding
PI/PD: William D. Meek

Interaction of Antibodies with Toxins
This project studies the interaction of monoclonal and polyclonal antibodies with various toxins using high performance liquid chromatography (HPLC). Methods are being developed to determine binding constants in complex mixtures.
Sponsor: Intramural Funding
PI/PD: Charles G. Sanny

Microbial Contamination of Hockey Players’ Protective Mouth-Guards: An In Vivo Study
The purpose of this study is to determine the extent of contamination by microorganisms of protective athletic mouth-guards worn by hockey players. Protective athletic mouth-guards routinely harbor pathogenic and opportunistic microorganisms that may be potentially harmful to the wearers’ oral and systemic health by harboring and transmitting oral and systemic pathogens to the wearer. The finding of mold in the mouth-guard suggests a possible correlation between mouth-guard use and exercise-induced asthma. These findings support limiting the length of wear of protective athletic mouth-guards and/or the possibility of single-use protective athletic mouth-guards.
Sponsor: Intramural Funding
PI/PDs: R. Stanley Conrad, R. Thomas Glass, Jay W. Bullard

Nonpolar Antimicrobial Agents and the Gram-Negative Bacterial Cell Surface
Bacterial pathogenesis research in our laboratory has consistently focused on the cell envelope physiology of gram-negative bacteria representing both animal and human pathogens. It has featured investigations of the involvement of membrane lipid and lipopolysaccharide composition in cell envelope permeability to lipophilic antibiotics and antiseptics, the process of acquisition of adaptive resistance to antibiotics, the molecular genetic basis of capsulation and its effect on outer surface function, cell surface lipoprotein content, and the properties of cell
surface hydrophobicity and charge. Particular emphasis has been directed toward *Pseudomonas aeruginosa*, *Burkholderia multivorans*, and members of the *Pasteurellaceae* pathogenic in animals of agricultural importance.

Sponsor: Intramural
PI/PD: Franklin R. Champlin

Mid-Brain Modulation of Social Attachment
These studies use behavioral, pharmacological, neuroanatomical, and immunocytochemical methods to examine the neural processes that underlie the formation and maintenance of monogamous pair bonds.
Sponsor: National Institutes of Health-NICHD
PI/PD: J. Thomas Curtis

NaCl Taste Responses: Bases for Sex Differences in Rat
These studies use behavioral, electrophysiological, neuroanatomical, and immunocytochemical methods to examine the peripheral and central neural mechanisms that underlie sex differences in preference for the taste of salt.
Sponsor: National Institutes of Health-NIDCD
PI/PD: Kathleen S. Curtis

Central pathways and sex differences in body fluid regulation
These studies use physiological, behavioral, neuroanatomical, and immunocytochemical methods to examine central pathways and neurotransmitter systems involved in the control of body fluid volume and osmolality, focusing on the role of ovarian hormones in sex differences in the central control of body fluid balance.
Sponsor: Intramural funding
PI/PD: Kathleen S. Curtis

Estrogen, central pathways, and body fluid regulation
In addition to their classic peripheral effects, ovarian hormones such as estrogen have actions within the central nervous system (CNS) by actions at estrogen receptors that are broadly distributed throughout the CNS, including areas involved in body fluid volume regulation. However, few studies have investigated the role of estrogen in CNS control of body fluid volume. The experiments in this proposal use neuroanatomical methods and focus on CNS pathways and neurotransmitter systems known from many years of studies of male rats to be activated by volume challenges. The experiments examine neural activation in response to hypovolemia in ovariectomized female rats with and without estrogen to determine whether 1) estrogen affects activation in specific neurotransmitter systems that are important in CNS responses to volume loss; 2) estrogen affects central responses to volume loss in functionally connected central areas; and 3) estrogen effects on central responses to volume loss involve regional and neurotransmitter-specific localization of estrogen receptors. Together, results from these studies will contribute to better understanding of how estrogen actions on specific neurotransmitter systems in defined central pathways affect CNS activation in response to volume loss.
Sponsor: OCAST
PI/PD: Kathleen Curtis
Synthesis of Lipid Mediators by *Candida albicans*

Candida albicans is the most important fungal pathogen in immunocompromised individuals such as AIDS, cancer or transplant patients. Recent research has shown that these fungi are able to generate prostaglandin E$_2$, an important regulator of the human immune system. Prostaglandin production in *C. albicans* appears to follow a biosynthetic pathway that is markedly different from the mammalian cyclooxygenase pathway. The aim of our research is to identify the genes and enzymes involved in prostaglandin E$_2$ biosynthesis in *C. albicans* using genomic and biochemical methods. New insights into the interactions of fungi with the host immune system and the identification of novel antifungal targets could be important outcomes of this study.

Sponsor: National Institutes of Health
PI/PD: Gerwald Köhler

Interactions of Beneficial Microbes with *Candida albicans* and the Host

The human microbiome consists of thousands of microbial species that are considered commensals or even mutualistic symbionts because they can provide nutrients and protect the host from pathogens. Probiotics are microbial strains that provide additional health benefits for the human host when present in sufficient quantities. The molecular mechanisms how these microorganisms exert their beneficial effects are largely unknown or poorly characterized. We are using genomic, microbiological and biochemical techniques to learn more about the molecular interactions between beneficial bacteria and pathogens such as the fungus *Candida albicans*. Cell and tissue culture models are employed to characterize how beneficial microbes improve host defenses and interfere with fungal pathogenesis. These studies could open new avenues for prophylaxis and therapy of many infectious diseases.

Sponsor: Intramural
PI/PD: Gerwald Köhler

Propriospinal Pathways Involved in Sensory-Motor Integration

The purpose of this study is to examine how neurons of propriospinal pathway(s) originating in the upper cervical spinal cord process information to modulate sensory motor integration in the spinal cord. Stimulation of upper cervical neurons modulates the activity of neurons at lower segments and visceral, motor, pulmonary, and cardiac function. Our current attention is toward determining how cervical propriospinal neurons process information from brainstem nuclei.

Sponsor: Intramural Funding
PI/PD: Kenneth E. Miller

Sequencing the Genome of Drill Cytomegalovirus

This project will sequence the genome of this virus, which resides in monkeys and is similar to human viruses, allowing comparative studies.

Sponsors: Niblack Scholar Program, Intramural Funding
PI/PD: Earl L. Blewett

Spinal Cord Injury—Astrocytosis and Neural Plasticity

After spinal injury, astrocytes undergo reactive astrocytosis, producing a glial scar that inhibits neural regeneration. Little is known concerning alterations of metabolism or altered phenotype in reactive astrocytes. We are evaluating reactive astrocytosis following chronic injury with and without methylprednisolone, the major treatment for spinal injury. Our long-term goal is to
reduce or eliminate the harmful parts of glial scarring in order to promote nerve regrowth or recovery of function in injured patients.

Sponsor: Intramural Funding
PI/PD: Kenneth E. Miller

Trafficking and Targeting of Muscarinic Receptors
Muscarinic acetylcholine receptors belong to the G protein-coupled receptor superfamily and five distinct subtypes (M₁-M₅) have been identified thus far. Interestingly, subtypes of muscarinic receptor can be differentially localized in polarized cells. The primary goal of our research is to learn more about the molecular mechanisms responsible for subtype-specific differences in muscarinic receptor localization in neurons (i.e., presynaptic versus postsynaptic) of the central nervous system.

Sponsor: National Institutes of Health-NINDS and Intramural funding
PI/PD: Gregory W. Sawyer

Vision Research Program
This program conducts interdisciplinary investigations into the neurobiology of vision and methods to restore sight to the diseased eye. The goal of this study is to develop, fabricate, and implant a neuro-prosthetic device to restore or improve vision in an eye with a damaged or diseased retina. An artificial vision system is under development in a collaborative effort of neuroscientists, electrical engineers, medical geneticists, and retinal surgeons. Several animal models and computer simulations are used to develop the components of the retinal implant and its micro-technology. Electrophysiological, neuronal tissue culture, retinal blood flow, and semiconductor and laser technology are utilized. The Electrical Engineering Department at the University of Tulsa provides engineering collaboration. Current studies concern the design of an implantable retinal prosthesis with the capability of detecting motion in the visual field.

Sponsor: Intramural Funding
PI/PD: Warren E. Finn

CLINICAL SCIENCES

Screening for Risk of Mental Disorder in Primary Care
The incidence of mental disorders in primary medical care is high, but the rate of detection is relatively low. This pilot project examines the utility of using two screening tests—the Patient Health Questionnaire (PHQ) and Drug Abuse Screening Test (DAST)—and a brief standardized interview to identify risk and confirm the presence of one or more of the most commonly occurring mental disorders.

Sponsor: Oklahoma Department of Mental Health and Substance Abuse
PI/PDs: Richard A. Wansley, Ph.D., and Richard H. Bost, Ph.D.

Assessing Empathic Communication in Medical Students
Some research links empathic communication by physicians to better medical outcomes and to higher ratings of clinical competence. This research attempts to rate medical students on their performance of empathic behaviors during standardized patient interviews and examines the association of these behaviors with ratings of clinical competence in clinical clerkship rotations and with scores on scales assessing empathic attitudes.

Sponsor: Intramural Funding
PI/PDs: Michael H. Pollak, Susan K. Redwood
Cognitive Rehabilitation Following Brain Injury

Injury of brain tissue occurs in many diseases and traumatic incidents. Impaired perceptual abilities, cognitive functions, and emotional distress secondary to these injuries often prevent patients from returning to productive work and family life. Rehabilitation therapies have been widely available for only the past twenty years; research into their effectiveness is in its infancy. Current investigation involves examining the efficacy, clinical utility, and cost effectiveness of on-line computerized cognitive/perceptual rehabilitation and Cognitive Behavior Therapy systems. In addition, web-based tools for evaluating the statistical significance of clinical changes in individual patients are being developed. This research involves collaboration among OSU-CHS faculty and staff, as well as faculty from other institutions.

Sponsor: Intramural Funding
PI/PD: Richard H. Bost

Comparative Evaluation of Denture Decontamination Using the MicroWave™ Dental Sanitizing and Cleaning System, Polident with PoliShield™, and Tap Water: An In vivo Study

A wide range of microorganisms must be considered when treating either oral or systemic diseases in denture wearers. Denture hygiene and decontamination are critical to prevent both oral and systemic disease transmission. The dentures in ill patients must be considered as possible sources of pathogenic microorganisms. Previous studies (in vitro) have demonstrated that methyl-methacrylate can be contaminated with microorganisms and that a variety of decontamination methods have been ineffective. The purpose of this complete denture study was to test the effectiveness of decontamination methods against a wide range of microorganisms. Comparative studies were completed on three decontamination methods: MicroWave™ Dental Sanitizing and Cleaning System, Polident with PoliShield™, and tap water. The study showed that MicroWave™ Dental Sanitizing and Cleaning System was the only modality found consistently to decontaminate or to sanitize dentures worn by patients when compared to Polident with PoliShield™ and tap water.

Sponsor: Intramural Funding

The Effect of Cephalo Pelvic Disproportion on Otitis Media

Otitis Media is a frequently occurring, yet rather perplexing condition causing inflammation of the middle ear. It is perplexing because numerous conditions fall under the umbrella of Otitis Media, including viral infections, bacterial infections, and the presence of various fluids, which can be categorized as either acute or chronic depending on the duration of fluid build-up. There is no distinct determination of the cause(s) of Otitis Media. Some postulate that allergies, whether resulting from environmental conditions or digestion of particular foods, trigger Otitis Media. Unfortunately, many experts do not believe an allergen triggers Otitis Media. The purpose of this study is to examine the effect of Cephalo Pelvic Disproportion on Otitis Media.

Sponsor: Intramural Funding
PI/PDs: Kayse Shrum and Jenny Alexopulos

The Effect of Osteopathic Manipulative Treatment, as Newborns, on the Health of Children in the First Six Months of Life

The study was an outpatient chart review of children’s first six months, matching 58 who had received OMT as newborns with 58 who had not. Comparison of the clinical variables yielded a few differences between the cohorts in the direction of less of the following symptoms in the
intervention patients for at least one month: food intolerance, colic mentioned, chalasia- associated symptoms, antibiotic usage, spitting, diarrhea, and otitis media.

Sponsors: American Osteopathic Association, American Academy of Osteopathy (Robuck Fund)

PI/PD: Miriam V. Mills

Effects of Aircraft Cabin Altitude on Passengers

Decreased ambient air pressure at high altitude limits the oxygen available for breathing. The interiors (cabins) of commercial aircraft are pressurized to the equivalent of an altitude of 8,000 feet or less during flight. The effects of decreased oxygen were studied in over 550 volunteer passengers during 20-hour flights in an altitude chamber at air pressures equivalent to altitudes between 4,000 and 8,000 feet. The results are expected to be important for air travel regulations and future commercial aircraft design.

Sponsor: Boeing Company

PI/PD: Paul Rock

Evaluation of the Sanitization Effectiveness of Medical Tabs on Dentures Contaminated with Known Microbial Flora, an *In vitro* Study

Dentures contaminated with *Staphylococcus aureus*, *Pseudomas aeruginosa*, *Bacillus cereus*, *Candida albicans*, and *herpes simplex* virus I were tested to see if they could be decontaminated by using Medical Tabs for Dentures. Viral analyses found that dentures retain large amounts of virus when washed with water, but no virus was recovered from any of the 40 samples treated with Medical Tabs for five minutes. It was determined that a single use of Medical Tabs for Dentures is effective in eliminating certain species of microorganisms, including selected viruses, *in vitro*.

Sponsor: Intramural Funding

PI/PDs: R. Thomas Glass, Robert S. Conrad and Earl L. Blewett

Fidgeting During Daily Life

An imbalance between energy intake and expenditure may lead to weight change which results in obesity. Energy expenditure related to physical activity is an important determinant of such an imbalance. This research focuses on one component of non-exercise daily physical activity (i.e., fidgeting) that may contribute to this energy imbalance. This research attempts to demonstrate that individuals differ characteristically in fidgeting in ways that can be measured during daily life using unobtrusive body-worn monitors.

Sponsor: Intramural Funding

PI/PD: Michael H. Pollak

Human Identity Laboratory

Standards under which forensic DNA-typing laboratories operate mandate that the amount of human DNA recovered from forensic samples be determined. Currently, methods used for quantification of human DNA in extracts rely on technology that is completely different from that used normally in the crime laboratory to develop DNA profiles. Over the past two years, we have undertaken to develop and validate a DNA quantification method relying upon quantitative PCR amplification of the human amelogenin locus. The amelogenin gene in human DNA is six base pairs longer in males than in females and serves as a way to determine the sex of a DNA sample. In previous studies from the laboratory, the validity of the quantitative PCR method was established. Current work aims to validate its use to quantify male and female contributions of DNA to mixed samples, which are common in sexual assault cases.
Microbial Contamination of Protective Mouth Guards in Hockey Players: An In Vivo Study
Removable dentures harbor a wide range of pathogenic and opportunistic microorganisms that can produce disease in the wearer. Protective mouth guards are of similar construction and have been used in a variety of sports for years. Review of medical/dental literature reveals no studies that investigate whether mouth guards can act as reservoirs of pathogenic and opportunistic microorganisms and be, therefore, potentially harmful to the wearers. A wide array of pathogenic and opportunistic gram-negative and gram-positive cocci and rods and were found in the mouth guards worn by semi-professional hockey players, including one mouth guard yielding Candida dublinensis, a yeast commonly found in HIV positive patients. Protective athletic mouth guards do contain pathogenic and opportunistic microorganisms that might be potentially harmful to the wearer. The findings of this study would support the idea of limiting the length of wear of protective athletic mouth guards and the possibility of single-use protective athletic mouth guards.

Microbial Retention in Dentures That Have Been Stored for 1.5 Years and Exposed to Harsh Treatments
Dentures have long been associated with a concurrent stomatitis. The purpose of this study was to evaluate the effects of an extended period of drying, freezing, and boiling on the microorganisms found in dentures that have been worn from 12 days to 48+ years. Portions of polymethyl-methacrylate dentures that had been used in previous studies were frozen and thawed a minimum of two times and ultimately frozen for approximately 1.5 years. The results of these experiments revealed that subjecting dentures to such harsh treatment does substantially reduce the numbers of microorganisms, but that sufficient numbers of disease-producing microorganisms remain and a more effective means of denture sanitization needs to be found.

Oklahoma Area Health Education Center Program
The Oklahoma Area Health Education Center Program (OkAHEC) is a sponsored program of OSU-COM that is conducted through regional AHECs located in Enid, Poteau, Lawton, and Pryor, and a training/health care facility in the Osage Hills Complex in Tulsa. The program combines academic and community resources to improve the supply and distribution of primary care professionals and to increase the accessibility of quality health care services in rural and medically underserved areas. The OkAHEC mission is accomplished through community-based training for health professional students and medical residents with rural and underserved populations; educational interventions that promote disease prevention and improved health through access to primary health care services; continuing education for health practitioners in rural communities; health careers recruitment with a special focus on minority and underserved populations; locally-based initiatives that respond to emerging health care needs; and coordination with other state and federal primary care initiatives.
Roles of a Multidrug Efflux System and Lipopolysaccharide in Antimicrobial Resistance of *Pasteurella haemolytica*

Pasteurella haemolytica is a primary etiological agent of bovine respiratory disease (BRD) in cattle resulting in significant economic losses in the cattle industry. The development of antibiotic resistance among feedlot cattle fed prophylactic doses of various antibiotics to prevent BRD is a matter of particular concern. This project begins by determining the minimal inhibitory concentration (MIC) of 13 commonly-used antibiotics among 22 clinical isolates of *P. haemolytica*. Strains with unusual resistance patterns will be grown up in sufficient biomass to allow the extraction of lipopolysaccharides (LPS), which are major components of the bacterial cell wall that determines antimicrobial accessibility. Chemical characterizations of these LPS will be used to determine if antibiotic resistance can be correlated to the specific chemical composition of the outer membrane.

Sponsor: Targeted Research Initiative Program
PI/PDs: R. Thomas Glass and Leigh B. Goodson and Robert S. Conrad

Rotavirus Vaccine Study

The Department of Pediatrics is evaluating the safety of a bovine viral vaccine for infants for the prevention of acute gastroenteritis due to Rotavirus. This virus is the most common cause of dehydration, with hospitalization in children less than three years of age. Over 60,000 children will be involved in the study worldwide.

Sponsor: Merck
PI/PD: Stanley E. Grogg

Student-Led Stress Management Program for First-Year Medical Students

The medical education community has emphasized repeatedly the importance of teaching stress management and self-care skills to medical students. However, descriptions and evaluations of intervention programs are infrequent. This project collects and disseminates program evaluation data from medical students who have participated in the OSU-COM Stress Management Program.

Sponsor: Intramural Funding
PI/PDs: Susan Redwood and Michael Pollak

Suicide among American Indians in New Mexico

Analysis of quantitative and qualitative data is continuing with Philip May of the University of New Mexico to update epidemiological information regarding completed suicides among the Apache, Navajo, and Pueblo Indians in New Mexico from 1957-1998. Age and gender differences, behavioral interactions prior to the event, and trends in suicide rates are being explored in these populations.

Sponsor: Indian Health Service
PI/PD: Nancy Van Winkle

The Use of Osteopathic Manipulative Treatment and Adjuvant Therapy in Children with Recurrent Acute Otitis Media

Patients with recurrent earaches (otitis) were followed for six months, with 32 patients receiving routine pediatric care and 25 receiving routine care plus adjuvant manipulation. Clinical status was monitored by review of medical records, audiograms, parent behavior rating, and tympanograms. The treatment group experienced a greater decrease in average monthly
episodes of average monthly antibiotics prescribed, fewer surgical interventions, and more normal tympanograms.

Sponsors: American Osteopathic Association, American Academy of Osteopathy (Robuck Fund)

PI/PDs: Miriam V. Mills

Clinical Drug Trials
Several of our faculty have contracts with different pharmaceutical companies to test new drugs. Ongoing trials are testing drugs for the treatment of HIV/AIDS, cardiovascular disease, asthma, and other diseases.